Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
Heliyon ; 10(9): e30309, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711649

RESUMO

Background: The thyroid gland exhibits a subtle interconnection with the lungs. We further investigated the correlation between thyroid hormone sensitivity and lung function in euthyroid individuals. Methods: Data on spirometry and mortality for participants aged 19-79 years were extracted from the NHANES database. Obstructive lung function was defined as a forced expiratory volume in 1 s to forced vital capacity ratio (FEV1/FVC) < 0.70, while restrictive lung function was considered when FEV1/FVC ≥0.70 and baseline FVC <80 % predicted. Central and peripheral sensitivities to thyroid hormones were mainly evaluated by Thyroid Feedback Quantile-based Index (TFQI) and Free Triiodothyronine/Free thyroxine (FT3/FT4) ratio. Logistic regression and subgroup analysis were used to examine potential associations between thyroid hormone sensitivity and lung function. The association between TFQI and all-cause mortality risk was also investigated. Results: A total of 6539 participants were analyzed, 900 with obstructive lung function and 407 with restrictive lung function. The prevalence of impaired lung function, both obstructive and restrictive, increased with higher TFQI levels. Logistic regression analysis showed that increased TFQI and decreased FT3/FT4 levels were independent risk factors for obstructive and restrictive lung function (P < 0.05). After adjusting for the impact of lung function, TFQI (HR = 1.25, 95 % CI 1.00-1.56, P = 0.048) was an independent risk factor for all-cause mortality. Conclusion: Reduced sensitivity to thyroid hormones has been linked to impaired lung function. TFQI and FT3/FT4 are potential epidemiological tools to quantify the role of central and peripheral thyroid resistance in lung function.

2.
Inflammation ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773023

RESUMO

Cancer therapy has entered a new era with the use of programmed cell death protein 1 (PD-1) immune checkpoint inhibitors. When combined with thoracic radiotherapy, it demonstrates synergistic anti-tumor effects and potentially worsens radiation-induced myocardial fibrosis (RIMF). RIMF is the final stage of radiation-induced heart disease (RIHD) and a potentially fatal clinical complication of chest radiotherapy. It is characterized by decreased ventricular elasticity and distensibility, which can result in decreased ejection fraction, heart failure, and even sudden cardiac death. Pyroptosis, a type of programmed cell death, is mediated by members of the gasdermin (GSDM) family and has been associated with numerous cardiac disorders. The effect of pyroptosis on myocardial fibrosis caused by a combination of radiotherapy and PD-1 inhibitors remains uncertain. In this study, a 6MV X-ray of 20 Gy for local heart irradiation was used in the RIHD mouse model. We noticed that PD-1 inhibitors aggravated radiation-induced cardiac dysfunction and RIMF, concurrently enhancing the presence of CD8+ T lymphocytes in the cardiac tissue. Additionally, our findings indicated that the combination of PD-1 inhibitor and thoracic radiation can stimulate caspase-1 to cleave GSDMD, thereby regulating pyroptosis and liberating interleukin-8 (IL-18). In the myocardium of mice, the manifestation of pyroptosis mediated by GSDMD is accompanied by the buildup of proteins associated with fibrosis, such as collagen I, transforming growth factor ß1 (TGF-ß1), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor α (TNF-α). Moreover, it was discovered that TFG-ß1 induced the phosphorylation of Smad2/Smad3 when the cardiac underwent PD-1 inhibitor in conjunction with thoracic irradiation (IR). The findings of this research indicate that PD-1 inhibitor worsen RIMF in mice by triggering GSDMD-induced pyroptosis and influencing the TGF-ß1/Smads pathway. While using the caspase-1 inhibitor Z-YVAD-FMK, RIMF can be alleviated. Blocking GSDMD may be a viable strategy for managing myocardial fibrosis caused by the combination of PD-1 inhibitors and radiotherapy.

3.
Nature ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750357

RESUMO

Ab initio calculations have an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions1-3 to quantum chemistry4-6 and from atomic and molecular systems7-9 to nuclear physics10-14. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing an approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible owing to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations15,16 of light nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity chiral effective field theory interactions17,18 and find good agreement with empirical data. These results are accompanied by insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.

4.
Infect Drug Resist ; 17: 1781-1790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736433

RESUMO

Carbapenem-resistant Salmonella enterica (S. enterica) pose a significant threat to public health, causing gastroenteritis and invasive infections. We report the first emergence of a carbapenem-resistant S. enterica serovar London strain, A132, carrying the blaNDM-5 gene in China. Whole-genome sequencing and bioinformatics analysis assigned A132 to be ST155, a multidrug-resistant clone frequently reported in China. The strain A132 exhibited resistance to multiple antibiotics, with 20 acquired antibiotic resistance genes (ARGs) identified, predominantly located on the IncFIB plasmid (pA132-1-NDM). Notably, the blaNDM-5 gene was located within an IS26 flanked-class 1 integron-ISCR1 complex, comprising two genetic cassettes. One cassette is the class 1 integron, which may facilitate the transmission of the entire complex, while the other is the blaNDM-5-containing ISCR1-IS26-flanked cassette, carrying multiple other ARGs. Genbank database search based on the blaNDM-5-carrying cassette identified a similar genetic context found in transmissible IncFIA plasmids from Escherichia coli (p91) and Enterobacter hormaechei (p388) with a shared host range, suggesting the potential for cross-species transmission of blaNDM-5. To our knowledge, this is the first reported case of Salmonella serovar London ST155 harboring blaNDM-5 gene. Phylogenetic analysis indicated a close relationship between A132 and eight S. London ST155 strains isolated from the same province. However, A132 differed by carrying the blaNDM-5 gene and four unique ARGs. Given the high transmissibility of the F-type plasmid harboring blaNDM-5 and 18 other ARGs, it is imperative to implement vigilant surveillance and adopt appropriate infection control measures to mitigate the threat to public health.

5.
Phytother Res ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739454

RESUMO

Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.

6.
Biol Direct ; 19(1): 34, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698487

RESUMO

BACKGROUND: LncRNA PCED1B-AS1 is abnormally expressed in multiple cancers and has been confirmed as an oncogene. Our study aimed to investigate the regulatory mechanism of lncRNA PCED1B-AS1 in gastric cancer. METHODS: TCGA database was used to analyze the abnormal expression of lncRNA PCED1B-AS1 in gastric cancer. By database prediction and mass spectrometric analysis, miR-3681-3p and MAP2K7 are potential downstream target molecules of lncRNA PCED1B-AS1 and verified by dual-luciferase report assay. RT-qPCR analysis and western blot were performed to detect the expressions of PCED1B-AS1 and MAP2K7 in gastric cancer cell lines and tissues. CCK-8 kit was applied to measure the cell viability. Wound healing and Transwell experiment were used to detect the migration and invasion. Western blot and immunohistochemical staining were performed to detect the expressions of EMT-related proteins in tissues. The changes of tumor proliferation were detected by xenograft experiment in nude mice. RESULTS: PCED1B-AS1 expression was higher but miR-3681-3 expression was lower in gastric cancer cell lines or tissues, compared to normal group. Function analysis verified PCED1B-AS1 promoted cell proliferation and inhibited cell apoptosis in gastric cancer cells in vitro and in vivo. LncRNA PCED1B-AS1 could bind directly to miR-3681-3p, and MAP2K7 was found to be a downstream target of miR-3681-3p. MiR-3681-3p mimics or si-MAP2K7 could partly reverse the effect of PCED1B-AS1 on gastric cancer cells. CONCLUSION: PCED1B-AS1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-3681-3p to upregulate MAP2K7 expression in gastric cancer, which indicated PCED1B-AS1/miR-3681-3p/MAP2K7 axis may serve as a potential therapeutic target for gastric cancer.


Assuntos
Transição Epitelial-Mesenquimal , MAP Quinase Quinase Quinases , Camundongos Nus , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Animais , Camundongos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Movimento Celular , Metástase Neoplásica
7.
J Orthop Res ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747030

RESUMO

The objective of this study was to determine the optimal meniscal radiomic features to classify people who will develop an incident destabilizing medial meniscal tear. We used magnetic resonance (MR) images from an existing case-control study that includes images from the first 4 years of the Osteoarthritis Initiative (OAI). For this exploratory analysis (n = 215), we limited our study sample to people with (1) intact menisci at the OAI baseline visit, (2) 4-year meniscal status data, and (3) complete meniscal data from each region of interest. Incident destabilizing meniscal tear was defined as progressing from an intact meniscus to a destabilizing tear by the 48-month visit using intermediate-weighted fat-suppressed MR images. One reader manually segmented each participant's anterior and posterior horn of the medial menisci at the OAI baseline visit. Next, 61 different radiomic features were extracted from each medial meniscus horn. We performed a classification and regression tree (CART) analysis to determine the classification rules and important variables that predict incident destabilizing meniscal tear. The CART correctly classified 24 of the 34 cases and 172 out of 181 controls with a sensitivity of 70.6% and a specificity of 95.0%. The CART identified large zone high gray level emphasis (i.e., more coarse texture) from the posterior horn as the most important variable to classify who would develop an incident destabilizing medial meniscal tear. The use of radiomic features provides sensitive and quantitative measures of meniscal alterations, allowing us to intervene and prevent destabilizing meniscal tears.

8.
Sci Rep ; 14(1): 9744, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679606

RESUMO

To explore the spontaneous combustion characteristics and hazards of the low-temperature oxidation (LTO) stage in the process of spontaneous combustion of coal and mudstone, the pore structure, spontaneous combustion characteristic parameters, and exothermic characteristics of coal and mudstone were tested and studied, and the oxidation kinetic parameters were calculated. The results show that mudstone has a larger specific surface area and pore volume than coal. From the fractal characteristics, the pore structure of mudstone is more complex than that of coal. According to the comparison of theoretical and actual gas generation and oxygen consumption rate curves, it is found that there is an interaction between coal and mudstone in the LTO process. With the increase of mudstone mass ratio, gas production, and its oxygen consumption rate increase. Among them, CM-4 (Coal:Mudstone = 1:1) has the highest exothermic intensity and the exothermic factor (A) and fire coefficient (K) increase with the increase of mudstone content. The apparent activation energy of the mudstone sample is lower than that of the raw coal, indicating that the sample after adding mudstone is more likely to have spontaneous combustion in the LTO stage.

9.
ACS Macro Lett ; 13(5): 489-494, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38607650

RESUMO

Synchronously improving the photothermal conversion efficiency and photodynamic activity of organic small molecule photosensitizers is crucial for their further wide application in cancer treatment. Recently, the emerging A-D-A photosensitizer-based phototherapy systems have attracted great interest due to their plentiful inherent merits. Herein, we propose a design strategy for A-D-A photosensitizers with synchronously enhanced photothermal conversion and reactive oxygen species (ROS) generation efficiencies. Side chain programming is carried out to design three A-D-A photosensitizers (IDT-H, IDT-Br, IDT-I) containing hexyl, bromohexyl, and iodohexyl side chains, respectively. Theoretical calculations confirm that a bulky iodine atom could weaken the intermolecular π-π stacking and enhance spin-orbit coupling constants of IDT-I. These molecular mechanisms enable IDT-I nanoparticles (NPs) to exhibit 2.4-fold and 1.7-fold higher ROS generation efficiency than that of IDT-H NPs and IDT-Br NPs, respectively, as well as the highest photothermal conversion efficiency. Both the experimental results in vitro and in vivo verify that IDT-I NPs are perfectly qualified for the mission of photothermal and photodynamic synergistic therapy. Therefore, in this contribution, we provide a promising perspective for the design of A-D-A photosensitizers with simultaneously improved photothermal and photodynamic therapy ability.

10.
ACS Nano ; 18(19): 12096-12104, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687972

RESUMO

Direct harvesting of energy from moist air will be a promising route to supply electricity for booming wearable and distributed electronics, with the recent rapid development of the moisture-enabled electricity generator (MEG). However, the easy spatial distortion of rigid MEG materials under severe deformation extremely inconveniences the human body with intense physical activity, seriously hindering the desirable applications. Here, an intrinsically stretchable moisture-enabled electricity generator (s-MEG) is developed based on a well-fabricated stretchable functional ionic gel (SIG) with a flexible double-network structure and reversible cross-linking interactions, demonstrating stable electricity output performance even when stretched up to 150% strain and high human body conformality. This SIG exhibits ultrahigh tensile strain (∼600%), and a 1 cm × 1 cm SIG film-based s-MEG can generate a voltage of ∼0.4 V and a current of ∼5.7 µA when absorbing water from humidity air. Based on the strong adhesion and the excellent interface combination of SIG and rough fabric electrodes induced by the fabrication process, s-MEG is able to realize bending or twisting deformation and shows outstanding electricity output stability with ∼90% performance retention after 5000 cycles of bending tests. By connecting s-MEG units in series or parallel, an integrated device of "moisture-powered wristband" is developed to wear on the wrist of humans and drive a flexible sensor for tracking finger motions. Additionally, a comfortable "moisture-powered sheath" based on s-MEGs is created, which can be worn like clothing on human arms to generate energy while walking and flexing the elbow, which is promising in the field of wearable electronics.


Assuntos
Fontes de Energia Elétrica , Géis , Dispositivos Eletrônicos Vestíveis , Humanos , Géis/química , Íons/química , Água/química , Eletrodos , Corpo Humano
11.
ACS Omega ; 9(15): 17334-17343, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645335

RESUMO

The constituent ions of calcium phosphate in body fluids are in the supersaturated state and tend to form minerals physiologically or pathologically. Inorganic pyrophosphate (PPi) has been considered as one of the most important inhibitors against the formation of calcium phosphate minerals. However, serum PPi concentrations in humans are maintained at a level of several µmol/L, and its effectiveness and mechanism for mineralization inhibition remain ambiguous. Therefore, this work studied the mineralization process in an aqueous solution, explored the effective inhibitory concentration of PPi by titration, and characterized the species during the reactions. We find that PPi at a normal serum concentration does not inhibit mineralization significantly. Such a conclusion was further confirmed in the PPi-added serum. This work indicates that PPi may not be a major direct inhibitor of mineralization in serum and possibly functions via alternative mechanisms.

12.
Sci Rep ; 14(1): 8171, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589592

RESUMO

In order to study the effect of temperature on the structure and mechanical properties of coal with different metamorphic degree. Three coal samples with varying degrees of metamorphism were chosen for analysis. The discrete element software PFC2D is used to simulate the heat treatment and compression of coal. The findings indicate that during the heating process, low-order coal exhibits noticeable thermal cracks at an early stage, while thermal crack development in middle-order coal is concentrated in the later stages. In contrast, high-order coal demonstrates a more stable macroscopic structure. The strength and stiffness of low rank coal show the lowest value and decrease significantly within 135 °C. However, the strength and stiffness of medium rank coal decrease significantly after 135 °C. The changes of mechanical properties and damage modes of coal caused by thermal damage are often ignored, which may lead to the deviation of design and research results from the actual situation. Therefore, this study is of great significance to the prevention and control of coal mine disasters.

13.
World J Clin Cases ; 12(9): 1685-1690, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38576732

RESUMO

BACKGROUND: Many patients with ulcerative colitis (UC) do not respond well to, or tolerate conventional and biological therapies. There is currently no consensus on the treatment of refractory UC. Studies have demonstrated that the selective Janus kinase 1 inhibitor upadacitinib, a small-molecule drug, is effective and safe for treating UC. However, no studies have revealed that upadacitinib is effective in treating refractory UC with primary nonresponse to infliximab and vedolizumab. CASE SUMMARY: We report the case of a 44-year-old male patient with a chief complaint of bloody diarrhoea with mucus and pus, in addition to dizziness. The patient had recurrent disease after receiving mesalazine, prednisone, azathioprine, infliximab and vedolizumab over four years. Based on the endoscopic findings and pathological biopsy, the patient was diagnosed with refractory UC. In particular, the patient showed primary nonresponse to infliximab and vedolizumab. Based on the patient's history and recurrent disease, we decided to administer upadacitinib. During hospitalisation, the patient was received upadacitinib under our guidance. Eight weeks after the initiation of upadacitinib treatment, the patient's symptoms and endoscopic findings improved significantly. No notable adverse reactions have been reported to date. CONCLUSION: Our case report suggests that upadacitinib may represent a valuable strategy for treating refractory UC with primary nonresponse.

14.
Oncogene ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671157

RESUMO

The long-term maintenance of leukaemia stem cells (LSCs) is responsible for the high degree of malignancy in MLL (mixed-lineage leukaemia) rearranged acute myeloid leukaemia (AML). The DNA damage response (DDR) and DOT1L/H3K79me pathways are required to maintain LSCs in MLLr-AML, but little is known about their interplay. This study revealed that the DDR enzyme ATM regulates the maintenance of LSCs in MLLr-AML with a sequential protein-posttranslational-modification manner via CBP-DOT1L. We identified the phosphorylation of CBP by ATM, which confers the stability of CBP by preventing its proteasomal degradation, and characterised the acetylation of DOT1L by CBP, which mediates the high level of H3K79me2 for the expression of leukaemia genes in MLLr-AML. In addition, we revealed that the regulation of CBP-DOT1L axis in MLLr-AML by ATM was independent of DNA damage activation. Our findings provide insight into the signalling pathways involoved in MLLr-AML and broaden the understanding of the role of DDR enzymes beyond processing DNA damage, as well as identigying them as potent cancer targets.

15.
ACS Omega ; 9(10): 11615-11627, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496980

RESUMO

At present, related research on inhibitors has been gradually improved, but there is still a lack of research on the inhibition characteristics at specific release temperatures and the mechanism of inhibiting coal spontaneous combustion. Based on this, In this study, the inhibition characteristics of adding inhibitor to coal under critical temperature (R70) are studied in depth. In the experiment, lignite was selected as the research object, and four different types of inhibitors, MgCl2, triphenyl phosphite (TPPI), Phytic acid (PA), and melatonin, were applied to coal samples at room temperature and 70 °C, respectively. The temperature-programmed-gas chromatography test and Fourier infrared spectroscopy experiment were carried out, and the oxidation kinetic parameters were calculated to study the oxidation characteristics and micromechanism of the coal samples in the process of spontaneous combustion. The experimental results show that the amount of CO gas release and oxygen consumption rate are lower, and the inhibition rate and apparent activation energy are higher when the inhibitor is added under R70 than at room temperature. Under R70, the content of oxygen-containing functional group -COOH with higher activity of inhibitor is reduced, the generation of active sites is inhibited, the concentration of active center is reduced, the path of mutual transformation between active sites and oxygen-containing functional groups is blocked, and the active groups are promoted to form a relatively stable inert oxygen-containing ether bond, which reduces the spontaneous combustion tendency of coal.

16.
J Oleo Sci ; 73(5): 683-693, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522941

RESUMO

In this study, we outlined the green synthesis of Zinc oxide nanoparticles (ZnO NPs) using the plant-mediated method. Employing the nitrate derivative of Zinc and the extract from the native medicinal plant, Ottonia anisum, the nanoparticles were effectively produced. After obtaining a yellow-colored paste, it was meticulously dried, gathered, and set aside for subsequent examination. The UV-visible spectrometry analysis indicated an absorption peak at 320 nm, which is indicative of ZnO NPs. Characterization techniques, such as XRD and HR-TEM, confirmed the existence of agglomerated ZnO NPs with an average diameter of 40 nm. Through EDS analysis, distinct energy signals for both Zinc and Oxygen were observed, confirming their composition. Furthermore, FT-IR spectroscopy highlighted an absorption peak for Zn-O bonding in the range of 400 to 600 cm -1 . Further, we employed three distinct pain models in mice to evaluate the influence of ZnO NPs on the nociceptive threshold. Our findings revealed that, when orally administered, ZnO NPs at concentrations ranging from 5-20 mg/kg exerted a dose-dependent analgesic effect in both the hot-plate and the acetic acid-induced writhing tests. Moreover, when ZnO NPs were administered at doses between 2.5-10 mg/kg, there was a notable reduction in pain responses during both the initial and subsequent phases of the formalin test, but no change in PGE 2 production within the mice's hind paw was found. On the other hand, acute lung injury studies revealed that the administration of ZnO NPs orally 90 minutes prior to HCl instillation decreased the neutrophil infiltration into the lungs in a doseresponsive manner. This reduction in pulmonary inflammation was paralleled by a significant decrease in lung edema, as evidenced by the reduced total protein content in the BALF. Additionally, the ZnO NPs appeared to recalibrate the lung's redox equilibrium following HCl exposure, which was determined through measurements of ROS, malondialdehyde, glutathione, and catalase activity. All these results further indicated the potential of biofabricated ZnO NPs for future applications in analgesics and acute lung injury treatments.


Assuntos
Lesão Pulmonar Aguda , Analgésicos , Extratos Vegetais , Óxido de Zinco , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Analgésicos/síntese química , Analgésicos/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Camundongos , Masculino , Nanopartículas Metálicas/química , Química Verde , Relação Dose-Resposta a Droga , Modelos Animais de Doenças , Dor/tratamento farmacológico , Dor/induzido quimicamente , Ácido Acético
17.
J Thorac Dis ; 16(2): 1234-1246, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38505042

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is an unrepairable disease that results in lung dysfunction and decreased quality of life. Prevention of pulmonary fibrosis is challenging, while its pathogenesis remains largely unknown. Herein, we investigated the effect and mechanism of long non-coding RNA (lncRNA) DNM3OS/Antisense RNA in the pathogenesis of pulmonary fibrosis. Methods: EdU (5-ethynyl-2'-deoxyuridine) and wound healing assays were employed to evaluate the role of DNM3OS on cell proliferation and migration. Western blot detected the proteins expressions of alpha-smooth muscle actin (α-SMA), vimentin, and fibronectin. The interactions among genes were evaluated by RNA pull-down, luciferase reporter, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and chromatin Isolation by RNA purification (ChIRP) assays. Results: DNM3OS was upregulated by transforming growth factor beta 1 (TGF-ß1) in a dose- and time-dependent manner. DNM3OS knockdown repressed the growth and migration of lung fibroblast, and fibrotic gene expression (CoL1α1, CoL3α1, α-SMA, vimentin, and fibronectin), while suppression of TSC2 accelerated the above process. DNM3OS recruited EZH2 to the promoter region of TSC2, increased the occupancy of EZH2 and H3K27me3, and thereby suppressed the expression of TSC2. HOXA5 promoted the transcription of DNM3OS. Conclusions: HOXA5-induced DNM3OS promoted the proliferation, migration, and expression of fibrosis-related genes in human embryo lung fibroblast via recruiting EZH2 to epigenetically suppress the expression of TSC2.

18.
Pharmacol Res ; 202: 107127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438090

RESUMO

Circular RNAs (circRNAs) represent a novel class of non-coding RNAs that play significant roles in tumorigenesis and tumor progression. High-throughput sequencing of gastric cancer (GC) tissues has identified circRNA BIRC6 (circBIRC6) as a potential circRNA derived from the BIRC6 gene, exhibiting significant upregulation in GC tissues. The expression of circBIRC6 is notably elevated in GC patients. Functionally, it acts as a molecular sponge for miR-488, consequently upregulating GRIN2D expression and promoting GC proliferation, migration, and invasion. Moreover, overexpression of circBIRC6 leads to increased GRIN2D expression, which in turn enhances caveolin-1 (CAV1) expression, resulting in autophagy deficiency due to miR-488 sequestration. This cascade of events significantly influences tumorigenesis in vivo. Our findings collectively illustrate that the CircBIRC6-miR-488-GRIN2D axis fosters CAV1 expression in GC cells, thereby reducing autophagy levels. Both circBIRC6 and GRIN2D emerge as potential targets for treatment and independent prognostic factors for GC patients.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Autofagia , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Gástricas/patologia
19.
Front Biosci (Landmark Ed) ; 29(2): 89, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38420804

RESUMO

BACKGROUND: Aberrant splicing has been closely associated with human cancer, though the precise underlying mechanisms linking the two remain not fully understood. Investigating the role of splicing factors in cancer progression may aid in the development of targeted therapies for dysregulated splicing, thereby opening up new avenues for cancer treatment. RNA-binding motif 4 (RBM4) has been identified as a critical participant in the condensin II complex, which is involved in chromosome condensation and stabilization during mitosis. Its significance in tumors is currently gaining attention. The genetic characteristics of RBM4 suggest its potential to elucidate the malignant progression of tumors in a broader context, encompassing various types of cancer, known as pan-cancer. METHODS: This study aims to comprehensively explore the potential function of RBM4 in pan-cancer by leveraging existing databases such as The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). RESULTS: RBM4 is found to be overexpressed in almost all tumors and exhibits significant prognostic and diagnostic efficacy. The correlation between RBM4 and immune signatures, including immune cell infiltration and immune checkpoint genes, indicates that RBM4 could serve as a guiding factor for immunotherapy. CONCLUSIONS: As a member of the pan-oncogene, RBM4 has the potential to become a biomarker and therapeutic target for various malignant tumors, offering novel possibilities for precision medicine.


Assuntos
Processamento Alternativo , Neoplasias , Humanos , Prognóstico , Neoplasias/genética , Splicing de RNA , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
20.
Curr Med Chem ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38415455

RESUMO

BACKGROUND: Patients with glioma have limited treatment options and experience poor prognoses. Therefore, it is urgently needed to explore new diagnostic and therapeutic targets. OBJECTIVE: This study aimed to investigate the relevance of WSC domain-containing 2 (WSCD2) expression to glioma, clinicopathological characteristics, tumor-infiltrating immune cells (TILs), and patient prognosis. METHODS: We analyzed WSCD2 mRNA expression in glioma tissues and patient survival using the Gene Expression Profiling Interactive Analysis database. Furthermore, the relationship between the expressions of WSCD2 mRNA and TILs in gliomas was evaluated utilizing the Tumor Immune Estimation Resource database. Lastly, we employed multiplex immunohistochemistry to detect the protein expressions of WSCD2 and TILs in glioma tissues. RESULTS: WSCD2 mRNA expression in glioma tissues was lower than that in tissues of benign brain disease. High WSCD2 mRNA expression was also significantly associated with a favorable outcome. Additionally, WSCD2 mRNA expression was correlated with TIL expression in glioma; however, no such relationship was detected between the protein expressions of WSCD2 and TILs in glioma tissues. Cox regression multivariate analysis and Kaplan-Meier survival analysis showed that WSCD2 expression in glioma tissues could be an independent prognostic factor. CONCLUSION: This study highlights the correlation between WSCD2 expression and TILs and demonstrates the prognostic significance of WSCD2 in glioma. Furthermore, our results suggest that WSCD2 may be a potential immunotherapy target in glioma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA